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So far no assum tions haTe been made and equation (1) is rigorous1 
corrcct for adin g atic flow between two scctlons a t  the same levee 
Intcrnal hentinu by skin friction or the dissipation of eddies is merely 
a conversion orenergy from one form into another and not an addi- 
tion of encrgy ; hencc it. does not affect the vahdlty of equation (1) 
and need not appear m It. 
2 INTRODUCTION OF TIIE MEAN SPEED INTO THE ENERGY EQUATION. 

Let Q be the volume of fluid. which crosses the section A per unit 
time, and let S = Q i A; then S 1s the arithmetical mean, over the sec- 
tion, of the component velocity pormal to A and along the channel. 
Lot Q, and & be the corres qnding values at  A,. Measuring kinetic 
energy, as well as work an8 mternal energy, in normal mass-length- 
time units, we then set 

and proceed to substitute this expression for (2'- TI) in equation (1). 
This substitution is indispensable t o  further progress, but it in-rolves 

an assumption which destroys the rigor of all further deductions. 
The deductions aret nevertheless, very approximately confirmed by 
experiment, and it IS therefore worth whde to examine the assump- 
tion. 

If there were no turbulence and if the speed were uniform over 
each section, we should havg the two separate equations 

T=5S' 1 
. .  

(3) 

and equation (2) would be exact. If there is no turbulence but the 
speed of flow is nonuniform, ap roaching zero at the walls, as it must 

fied, but we shall have T>3S2 and % l > + S ' ~ ,  because the mean 
square speed, which determines the kinetic energy, is always greater 
than the arithmetical mean s eed S when the distribution over the 
section is not uniform. Witf a round pipe and nonturbulent flow 
T = $9 instead of JSa. 

In nearly all practical cases the flow of fluids is turbulent and the 
relation of the whole kinetic energy, including that of the turbulence, 
to the arithmetical mean normal component of the speed at the given 
section will depend on the amount of turbulence. It is impossible 
to say what the relation will be further than that the kinetic ener 

be involved in assuming equations (3), while, on the other hand, the 
fact that with increasing turbulence the speed becomes more nearly 
uniform over a cross section tends to decrease the difference between 
the mean s p a r e  and the arithmetical mean of the component normal 
to any sechon. 
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The assumption involved in using equation (2) is not, however, so 
violent as that which would be mvolved in using equations (3) 
separately. 

- 

For equations (3) are equivalent to . 
T-$S2= TI-+S,2=0 

whereas equation (2) is satisfied if 

T -  3s' = TI - $8: (4) 

no matter what the value is. Equation (4) and its equivalent (2) 
are satisfied if the error in assuming equations (3) to hold is the 
same a t  both sections without vanishing or even being small. This 
mill occur if the kinetic energy of turbulence is the same a t  both 
sections and if also the speed distributions over the two sections are 
such that the arithmetical mean normal s eed is the same fraction 
of the mean-square normal speed a t  bot TI . While therefore it is 
evident that the use of equations (3) separately might lead to con- 
clusions at variance with facts, equation (2) ma nevertheless be 

deductions from equations (2) and (1) shows that in many ordinary 
cases the errpr .committed by treating equation ( 2 )  as exact is in 
reality quite insianificant. 

For geometricay similar channels, the percentage error of equation 

nearly fulfilled in practice. The agreement. wit x observation of 

.. 
ne 

(2) depends only on y, in which v is the kinematic vkcosity of the 
fluid and D a linear dimension of the channel.. With a given fluid in 
a given channel increasing S increases the turbulence, but it is 
not evident how this will affect the percentage error, 7 Z T-SZ,  if 

at all. Hence, it seems possible that although turbulence increases 
with -, the percentage error in assuming equation (2) may 
not increase but remain constant or even decrease. On the other 

DS 
V 
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3. ISENTROPIC FLOW OF AN IDEAL GAS. 

If the physical properties of the fluid have been sufficiently inves- 
tioated and if a sufficient number of quantities are measured a t  each 
opthe two sections, the value of (~ fpv )  may be computed for each 
section and the value of (S2-S:) found from equation (5), to the 
degree of approximation permitted by the assum tions which have 
been discussed above. A process somewhat of t!h nature is pur- 
sued in the design of steam-turbine nozzles, ( e + p v )  being then the 
quantity known as the total heat of steam. 

But when the fluid is a gas, i t  is usual to roceed with deductions 
from equation (5) by the aid of t%-o furt R er assumptions which 
enable us to compute variations of e and v from observations of p 
alone. The first of these assum tions is that the fluid behaves sen- 

8 

sibly as an ideal gas defined by t % e equations 

pv= Re (6) 

e=r ,+  Cu (e-e,) (7) 
in which Cu is the specifk heat at constant polume, and eo is the 
internal energy at  the standard temperature e,. The properties of 

ases, such as air, carbon dioxide, or coal gas, when far 
from con ensation, are nearly in conformity with e uations ( 6 )  and 
(7), and for such fluids no serious error is involve 1 in making the 
assumption mentioned, unless very great variations of pressure and 
temperature are under consideration. Equations (6) and (7) imply 
also the relation 

in which C, is the specific heat at constant pressure. 
The second assumption is that during the simultaneous changes of 

pressure and temperature in passing from A to A, the familiar isen- 
tropic relation for an ideal gas, via, 

Ordinary 8 

C,= C,+R (8) 

(9) 

remains satisfied, k representing C,/C,. This assum tion is, of 

adiabatic, the internal heating, due to viscosity causes an increase 
of entropy. The assum tion amounts, thereEore, to assuming that 

increase of the temperature at  A, over what it would be if .there 
were no internal heating at all. 

The foregoing assum tions enable us to put equation (5) into a 
more available form. !?3y substituting from (6 )  and (7) into (5), 
and using (8), we have 

(10) 

course, not exact, for while we have stipulated that the H ow shall be 

this irreversible internal !i eating is not enough to cause any sensible 

1 
2 - (s~-s:)=c, (e,-e) 

By means of (9) and (6), this may be written 

r 
I 
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which is the usual form of equation (5) for isentropic flow of an 
ideal gas. If the s eed is known a t  either section, equation (10) 

and an observation of the difference of temperature; while equation 
(11) gives us similar information in terms of the ressures at A and 
A, if the density and tho ratio k are known. $0 shall apply this 
equation to both the Pitot tube and the Venturi meter. 

4. THE THEORY OF THE PITOT TUBE 

enables us to find t !I e speed a t  the other from a knowledge of C, 

To treat the Pitot tube, we consider the fluid which is approaching 
the dynamic opening. Startin at  a point so far upstream that the 

particle of fluid approaches the dynamic openin , slows down, and 

fluid, which covers the dynamic opening and communicates wit 
the differential gauge through the impact tube. The same particle, 
or another indistinguishable from it, emerges from the cap and, 
being accelerated by the now positive pressure radient, flows on 

when it has reached a region of semi ly constant pressure. We 
wish to apply equation ( 5 )  to this motion if we can find a plausible 
way of doing so. . 

Starting with the contour of a small plane area, in the undisturbed 
current and perpendicular to its general direction, we construct, in 
imagination, a tubular surface of which the sides are at every point 
parallel to the mean direction of motion of the fluid past that point, 
as found by averaging with regard to time. If the motion is not 
turbulent, this tube is a tube of flow and no fluid passes in or out 
through its sides. If the motion is turbulent, as it nearly always is 
in practice, the s a w  fluid does not flow continuously along the tube 
as it would if the walls were impervious. On the contrary, particles 
of fluid are continually leaving the tube in consequence of the tur- 
bulent time-channges of the direction of motion at any k e d  point; 
and these particles are continually replaced by others, of the same 
total mass, which enter from without the tube. But on the whole, 
the particles which enter have the same average component velocity 
don the tube as those which leave; for unless this were true we 

fluid a particular filament which was moving, on the whole, faster 
or slower than the surrounding fluid. V e  conclude that the net 
effect of turbulence is the same as if the imagina tube walls were 

exerting any skin friction on the fluid flowin 
If the whole current of fluid is at a seqsib 9 uniform temperature 

across its general direction, no heat passes in or out through the 
tubular surface, and e uation ( 5 )  may be applied as though we had 

if the tube is of small section, the axial speed, averaged with regard 

presence of the Pitot tubo pro (Y uces no sensible disturbance there, a 

'K mixes with the permaueiit high-pressure cap o p" nearly stationa 

along the impact tube, finally acquirin a sensiby f constant speed ~ 

cod % , merely by imagining the tubular surface, generate within the 

made rigid and perfectly reflecting for mechanica P impact without 

an impervious noncon \ ucting channel to deal with. Furthermore, 

5 them- 
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to time, \dl be the same at  all points of any one cross section. Hence 
the application of equation (5), involving the assumition of equation 
(2) or (4), is better justified than for a material tu e in which skin, 
friction would cause the axial speed to be nonuniform over any 
section. 

We now consider such an imaginary tube, starting in the undis- 
turbed fluid some distance u stream from the dynamic opening of 

and emergin again a t  the edge of tke o ening, to continue its course 

tube which passes through the. high-pressure cap may be regarded 
as an enlargement of cross sectiqn a t  yhich the mean axial speed is 
so reduced that its square is negh ible in corn arison with the square 

distance upstream and A, be the section of the tube where it passes 
through the high-pressure cap, S,2 is negligible in comparison with Sa 
and equation (5) gives us 

(12) 

in which S is the speed of the undisturbed current; e, p ,  and v refer 
to conditions in the undisturbed current; and E , ,  p , ,  w, refer to con- 
ditions in the dynamic opening. The static pressure, which the 
static o ening is designed to receive and transmit to the gauge, is ; 

permanent high-pressure cap, or p,.  

internal ener 

and v,=w and equation (12) reduces to 

. the Pitot tube, passing into t YI e hieh-pressure cap over the opening 

along the si 8 e of the impact tube. T t e  portion of the imaginary 

of the speed a t  distant points. 5 f we let B be a section at some 

s = Jm, + p 1 4  - (e +pol 

while t i! e pressure received by the dynamic opening is that in t e 

the very sma TI pressure variations 

Equation (12) 1s the general form of the Pitot tube e 
fluid, whether compressible or not. I n  the case o 

and specific po!ume. are not 

the densit of the liquid. If the pressure difference is ex- ;:::! as a head of li uid of density d ,  we have p ,  - p =  ghd and 
equation (13) takes the 1 orm 

s- 2 g - h  . d :  
the usual form of the Pitot tube e uation for a erfect or ideal tube. 

and (14) remain approxmately correctr-admittin% all the assump- 
tions made-thou h it is not evident how close t e approximation 

enough to cause sensible compression, we-must return to equation (5) 
and introduce the conditions for adiabatic flow of a gas, as was done 
in section 3 in arr!vin a t  equation (11). The fact that equation (14) 

shows that no great error is involved in neglectmg compressibllity 

Even when the fluid is a as, if % is small an a (p ,  - p )  therefore also 
small, and v,.are nearly t 1 e same as E and v so that equations (13) 

will be. But if t a e speed and .the pressure difference are great 

does agree well wlth o B servations on gas-currents at moderate speeds, 

Y 
_- 

I 

r- 

! 
1 
I 
I * ,  
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S 
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and justifies us in going on to find a closer approximation by treating 
the gas as ideal and thereby usmg an approximation to the com- 
pressibility. 

Assuming, then, that e uation (11) is applicable to. the imaginary 
current tube now under &scussion, me have, by settmg S:=O, the 
equation 

(15) 

k- 1 If we now s e t & = l + A  a n d T - n  we have 
P 

Setting tho J . . . .} = Xz, substituting in equation (15), and noticing 

that n A=- pl-p - we have '- 
k P  

which d 8 e k  from equation (13), obtained by disregarding com- 
. -  pressibility, only in the correction factor 

n-1  (n-1) (n-2)Az+(n--1) (n-2) (n-3)A3+. . .]i(l,) X=(l+TA+ 1 . 2 . 3  1 -2 .3 .4  

The quantity A=p,-p is the fractional rise of pressure a t  the 
mouth of the impact tube: hence i t  is, in practice, always a small 
quantity. The value of k for gases is always between Q and 1, so 
that n = - k is always between 3 and 0. Accordingly the terms of 
X containing A are alternately negative and positive and when A is 
small the series converges rapidly, the sum of all the terms in A being 
nearly equal to the first term alone, so that if the first is negligible the 
sum is negligible and X may be set equal to unity. 

The ratio of the specific heats of air is 1.40. Hence n = T  and we 
have 

P 

k-1  

2 

x= [ l - i ; T A + ~ A z - ~  lo g5As+t?tc.]H (18) - 

If an error of y per cent. in S is permissible, an error of y per cent. may 
also be allowed in the correction factor X and the value of A may be, 
at most, such as to make For any assigned 100 
values of the erro? y er cent. in the speed, the value of S can be 
found from equatlon 53) .  

5 Y A = - or A = 0.056~. . 
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Let us su pose, for example, that the Pitot tube is to be used for 
measuring t ! e speed of an aeroplane and that an accuracy of 0.5 per 
cent. is sufficient. To 
find what speed would give this head on the dikerential gauge, we 
set p =  1 atmosphere= 1.O13X1O6 dynes/cm.2 and p=0.0013 gram/ 

and substitute in (13), the result being S=66.1 m./sec.=212 
ft./sec.=148 miles/hour. Since an accuracy of better than 1.0 per 
cent. can hardly be demanded of an aeroplane speedometer, it is evi- 
dent that for all ordinary speeds of flight, no correction for com- 
pressibility is needed and equations (13) and (14) may be used. 

It is of course a simple matter to compute values of the correction 
factor X for various speeds; but in view of the uncertainties and 
assumptions involved in the theory, the results would have a mis- 
leading appearance of accuracy and would not in fact be worth the 
labor of computation. What has been shown is sufficient, namely, 
that if a Pitot tube does not measure the speed of an aeroplane cor- 
rectly the error is not due to neglecting the compressibility of the air. 

5. THE THEORY OF THE VENTURI METER. 

Then we have A=O.O28 and p -p=O.O28 p .  

. 

The Venturi meter is a channel of var ing cross section, and we 

of the meter where p is measured, and A, be the throat section at 
which the diminished pressure p ,  is observed. We have to use 
equation (5). 

If the meteris used for measurin the flow of a liquid of density p 

equation ( 5 )  then gives us 

may appl to it the eneral equations o tr flow which have already 
been deve 9 oped. In  I f  oing so, me shall let A be the entrance section 

we may set t1 = t and v, = v as we di 5 in treating the Pitot tube, and 

5,2-s2=2 P-P, (19) 
P 

Neither S nor S, vanishes; but in addition to (19) we have the equa- 
tion of continuity which for a fluid of constant density may be 
writ ten 

and (19) and (20) together enable us to h d  either S or 8,. If we 
represent the area ratio by a single symbol 

S,A, =SA (20) 

we have 

where 

and B is a constant characteristic of the given meter. 
Comparing (22) with (131, the equation for the Pitot tube in a 

liquid, we see that they differ only by the factor B which depends on 

the area ratio CY. If a= 
difference . ( p  - will 

various values of the r: 
we have t,he following 

tube with its B ynamia 

1. 5 D 
D, - 
-- 
a= 2.25 
B= 1.569 

Evidently, the Ventur 
larger than the Pitot 
the gauge rending be I 

If the fluid is a gas 
negligible at  sufficient1 
tion (22) may be use( 
allowed for. To treat 
assumptions as in sec 
and that the flow fro 
sensibl isentropic, tl 

being insignificant. 7 
case in hand, and if 
by a single symbol anL 

from t K e walls of the I 

we have by equation ( 

s: - 
p being the density c 
entrance section. 

To combine with (2 

and if we remember tl 
of an ideal gas pvk I 
may be written 

By using (26) to eliml 

S= 

b means of which th 
o i!l served pressure ra 
properties of the gas 
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ideal, p / p  is, for any given gas, proportional to the absolute tempera- 
ture 8 at the entrance section, and wc may write p=& % p, being 
the density of the gas at  the standard pressure p ,  and temperature e,. 

For air, G=k= 1.40 and if we insert the known value of p, a t  
1 atmosphere and 0' C. and set 

, 
P Po 00 

Qtl 

where 

S = Y &  

. .  

me have the values of Y shown in the following table for various 
pressure ratios r and for meters in which the throat diameter is 
3, 4, or a of the entrance diameter, i. e., a=4, 9, or 16. If t is the 
temperature at entrance, on the centigrade scale 
t is measured on the Fahrenheit scale, 

e 273 + t  while if 

e 46o+i  
F , = . 4 9 2  ' 

THE VENTURI BfETER FOR AIR. 

values of Yin S= yg0 
A entrance area 

S=Speed at entrance to meter a = x =  throat area . 
t=throat preasure+entrance prmure=p,/p 8=absolute temperature of air at 

&=absolute temperature of icepoint. 
entrance. 

Values of Y. 

I I 
1 -  

M./seo. 

0 9998 1.44 
.999 3.23 
.995 7.21 
.99 10.16 
.98 14.3 

. .95 22.2 
.90 30.4 
.SO 40.2 
.60 48.1 

-- 

a= 4 a-9  

Ft./sec. 

4. 74 
10.60 
23.65 
33.34 
46.48 
72. 8 
99.8 

131.7 
157.9 

Milepour. M./sec. 
-- 

E: 1 E6 
16.13 3.12 

49.6 9.62 
68.0 13.2 
89.8 17. 5 

107.6 21.1 

Ft./sec. Slile/hour 

2. 05 1. 400 
4.59 3. 13 

10.24 6.98 
14.11 9.85 
20.3 1 13.85 
31.6 21.5 
43.4 29. 6 
57. 5 39.2 
69.3 47.2 

a- 16 

M./sec. I Ft./sec. 

0.350 1.150 
0,784 2.57 
I. 75 5.74 
2.47 8.09 
3.47 11.38 
5. 39 17. 7 
7.41 24.3 
9.82 32.2 

11.86 38.9 

C 
Computed on the sssumptione pu=RB, Ctr=comtant, 2=1.400. C" 
P~=1.O1323X1O6 d y ? ~ / m * .  

p0=0.0012928 gm cmg at 760 mm. and 0" C 

Milepr. 

0. 784 
1.753 
3.91 
5. 52 
7. 76 

12.06 
16.57 
22.0 
26.5 - 

P 
i 

- i  
1 
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